
J. Fluid Mech. (2006), vol. 567, pp. 415–432. c© 2006 Cambridge University Press

doi:10.1017/S002211200600228X Printed in the United Kingdom

415

Tidal generation of internal waves from
a periodic array of steep ridges
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(Received 15 October 2004 and in revised form 24 April 2006)

The generation of internal gravity waves by an oscillatory tidal flow over a periodic
array of thin vertical walls is calculated analytically. For small values of the non-
dimensional height B = 2πHN/Lω, the radiated power per wall is the same as for a
single thin wall, and proportional to B2, in agreement with the linear scaling. (Here
H is the wall height, N the buoyancy frequency, L the wall spacing, and ω the
tidal frequency.) The radiated power is periodic in B with period 2π. It diverges
logarithmically for B = (1 + 2n)π, and vanishes for B = 2nπ.

1. Introduction
Mixing in the deep ocean is mainly caused by breaking internal waves. The

interaction of tidal currents with rough topography is an important energy source
for the internal wave field (Munk & Wunsch 1998; Polzin et al. 1997; Ledwell et al.
2000), and it is therefore of interest to compute the conversion rate of barotropic
tidal energy to internal wave energy.

Several such computations have recently been performed for the global ocean
(Arbic et al. 2004; Egbert, Ray & Bills 2004; Nycander 2005). They were all based on
linear wave theory, employing a linearized boundary condition at the bottom. This
approximation requires that the bottom slope is subcritical (Bell 1975a), i.e. smaller
than ω/N , where ω is the tidal frequency and N the buoyancy frequency. However,
Nycander (2005) found that approximately half of the total computed conversion rate
occurs at points where the slope is supercritical, and the linear theory therefore invalid.
It was also found that insufficient resolution of the bottom topography was the most
important source of uncertainty of the computation. When higher resolution data
become available, the problem of supercritical slope will become even more serious,
since the slope is in general steeper at smaller scales.

The main motivation for the present work is the desire to find the basic scaling of
the conversion rate when the slope is supercritical. To do this, one should consider a
sequence of different topographies, whose height fields differ only by a multiplicative
coefficient H . If H is so small that the bottom slope is subcritical everywhere, we
know from linear wave theory that the conversion rate is proportional to H 2. We
seek the scaling for larger values of H .

A simple energy argument indicates that the conversion rate should saturate at
supercritical slopes. To see this we first estimate the energy required to displace a fluid
parcel along sloping topography. According to linear theory, the vertical displacement
of such a parcel during a tidal cycle is of the order δz ∼ sU/ω, where s is the slope
and U the tidal velocity. This corresponds to the potential energy N2δz2 ∼ U 2(sN/ω)2

per unit mass. Hence, the kinetic energy U 2 due to the tidal motion is insufficient to
lift the parcel this distance if sN/ω > 1, i.e. if the slope is supercritical.
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In general, the energy conversion rate for supercritical slopes can only be found
numerically. Such calculations were performed by Khatiwala (2003) for moderate
supercriticality, sN/ω < 1.8. For a truncated sine topography he found that the
conversion rate saturates when the slope becomes supercritical, but for a Gaussian
ridge he found no saturation.

There are also a few idealized topographies for which an exact solution has been
found. These include a thin vertical wall (a ‘knife edge’) (St Laurent et al. 2003;
Llewellyn Smith & Young 2003), a rectangular ridge of finite width (St. Laurent et al.
2003), and a triangular ridge (Petrelis, Liewellyn Smith & Young 2006). In all these
cases the conversion at a single ridge was considered, and the depth D of the ocean
was considered to be finite. It was found that if the height H of the ridge is less than
D/2, the conversion rate is approximately within a factor two of the linear result.
Hence, the conversion rate is proportional to H 2 even in the supercritical regime in
these cases, until H becomes comparable to D (then the conversion increases even
more strongly with H ).

These results have led some authors to conclude that the conversion rate in general
scales as H 2 in the supercritical regime. However, while the bottom slope in the
ridge problems mentioned above is supercritical, it can be argued that the main non-
dimensional parameter there is in fact H/D, which is not the same as the criticality of
the slope. This is most clearly the case for the knife-edge problem. Accordingly, the
main physical effect seen in these problems is the flow acceleration over a ridge for
finite H/D. Since the flow is incompressible, the mass flux is the same across all vertical
sections, and if the ridge occupies a large fraction of the ocean depth the total velocity
at the ridge is much larger than the background tidal velocity. (Note that the velocity
associated with the wave field is not small compared to the background velocity in
these problems.) This flow acceleration explains the increased conversion compared
to the linear result, since the linear (i.e. subcritical) scaling implicitly assumes that the
tidal velocity at the ridge is the same as far away from the ridge.

The exact solutions mentioned above are appropriate for application to a single
and very high ocean ridge, such as the Hawaiian ridge, but not to extended regions
of supercritical but moderately high topography. In the latter case, the main physical
effect is not flow acceleration, but rather ‘shadowing’. If two neighbouring ridges have
supercritical slopes, there is a region in the valley between them from which wave
characteristics can only reach the water above after reflection by the ridges; this is
the ‘shadow zone’, see figure 1. As H increases, the shadow zone becomes larger,
while the vertical extent of the unshadowed region saturates. It is tempting to speculate
that this leads to saturation of the conversion rate, too. This idea is supported by the
numerical simulations by Khatiwala (2003).

With a single ridge there is no shadow zone. In order to study shadowing, we
will instead study a periodic array of thin vertical walls (or knife edges). The ocean
depth will be assumed to be infinite, which means that a radiation condition is
imposed at some level above the topography to exclude waves with downward group
velocity. This is done in order to obtain an analytically solvable problem, but there
is also a more fundamental reason for this assumption. The wave energy generated
at the topography must be allowed to leave the domain somewhere, since there is
no dissipation in the problem. When studying a single ridge, as done by St Laurent
et al. (2003) and Llewellyn Smith & Young (2003), it is natural to allow the waves to
escape horizontally, through the lateral boundaries. If the topography is periodic, on
the other hand, this is not possible, and we instead let them escape vertically, through
the upper boundary. This approach was used by Bell (1974a) and Balmforth, Ierly &
Young (2002).
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Figure 1. Illustration of shadowing. The straight lines are internal wave characteristics that
connect to the region above the topography.

Both approaches are approximations compared to the real ocean. With radiation
conditions at the lateral boundaries, the reflection from topographic features outside
the domain is neglected; with a radiation condition at the upper boundary we neglect
the reflection from the sea surface. For the lowest vertical modes it is obviously a bad
approximation to neglect reflection from the sea surface. High modes, on the other
hand, are much more likely to be decorrelated, or even absorbed, before reaching
the topography again after being reflected. (This is a result of refraction by density
inhomogeneities, and of nonlinear processes such as wave breaking, cf. Bell 1975b.)
In this case the coherent interaction between the topography and the waves reflected
from the surface can be neglected. High modes are generated by topographic length
scales L satisfying L � ND/ω, where N is the vertical average of the buoyancy
frequency. In the open ocean, ND/ω is typically several tens of kilometres. According
to the linear computations by Nycander (2005), most of the conversion in the global
ocean is done by topographic scales less than ten kilometres. For such length scales,
neglecting reflection from the sea surface should not be a serious problem.

In the problem with a single knife edge and finite depth studied by Llewellyn
Smith & Young (2003), the boundary condition at the upper surface effectively
imposes a vertical periodicity of the solution, as can be understood from the repres-
entation of the Green’s function with the help of an infinite series of mirror sources
(see § 3 and figure 8 below). The nature of the wave equation to be solved translates the
vertical periodicity to horizontal periodicity. In the present problem, with a periodic
knife edge and infinite depth, the boundary condition imposes horizontal periodicity,
and the wave equation translates this to vertical periodicity. Thus, there is horizontal as
well as vertical periodicity in both problems. This geometric similarity means that the
two problems are almost identical from a mathematical point of view, and we can rely
heavily on the results by Llewellyn Smith & Young (2003) in the calculations. In fact,
the conversion rate in the present case can be regarded as a continuation of their result,
obtained by formally allowing the ridge height to be larger than the ocean depth.

2. Basic equations
From the linearized hydrostatic fluid equations in the Boussinesq approximation

the following equation for internal waves can be derived:

∂4ψ

∂z2
∗∂t2

+ N2 ∂2ψ

∂x2
∗

= 0. (1)
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Figure 2. The bottom topography, consisting of a periodic series of thin vertical walls,
which have height H and are separated by length L.

Here ψ(x∗, z∗, t) is the streamfunction of the wave field (excluding the background
tide), so that the velocity is given by (u, w) = (−∂ψ/∂z∗, ∂ψ/∂x∗), and N is the
buoyancy frequency, which we assume to be constant. We assume that the bottom
topography consists of a periodic series of thin vertical walls (or ridges), see figure 2.
The kinematic bottom boundary condition is then

ψ = Uz∗ cos(ωt) on (x∗ = nL, 0 < z∗ < H ) and on z∗ = 0, (2)

where ω is the tidal frequency, H the height of the ridges, L the distance between
adjacent ridges, and n any integer.

We consider time-periodic solutions, setting

ψ = URe{e−iωtϕ∗} = U (ϕ∗r cosωt + ϕ∗i sinωt).

Inserting this into (1) and (2) we obtain

∂2ϕ∗

∂x2
∗

=
ω2

N2

∂2ϕ∗

∂z2
∗

(3)

and the boundary condition

ϕ∗ = z∗ on (x∗ = nL, 0 < z∗ < H ) and on z∗ = 0. (4)

The energy conversion at one of the ridges (per unit length along the ridge) is given
by the following equation (Llewellyn Smith & Young 2003):

C =
ρ0N

2U 2

ω

∫ H

0

z∗
∂ϕ∗i

∂x∗

∣∣∣∣
x∗=0+

dz∗. (5)

Notice that the Coriolis parameter (i.e. the background rotation) has been neglected
for convenience, but can be taken into account simply by replacing ω2 by ω2 − f 2 in (3).

We now introduce the following dimensionless variables:

x =
2π

L
x∗, z =

2πN

Lω
z∗, ϕ =

2πN

Lω
ϕ∗.

They are chosen so that the ridge spacing is 2π and the slope of the characteristics is
45◦. The final form of the wave equation is then

∂2ϕ

∂x2
=

∂2ϕ

∂z2
, (6)
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with the boundary condition

ϕ = z on (x = 2πn, 0 < z < B) and on z = 0, (7)

where the non-dimensional ridge height is defined by

B = 2π
HN

Lω
. (8)

We must also apply a radiation condition at some level above the ridges to exclude
waves that have downward group velocity. The energy conversion rate becomes

C =
ρ0L

2U 2ω2

4π2N
I (B), (9)

where I (B) is a non-dimensional function defined by

I (B) =

∫ B

0

z
∂ϕi

∂x

∣∣∣∣
x=0+

dz. (10)

Notice that the only non-dimensional parameter of the problem is the non-dimensional
ridge height B . Since B determines the amount of shadowing, it can also be regarded
as a criticality parameter, although the slope at each ridge is of course supercritical
regardless of the value of B .

For I (B) ∼ B2, (9) reduces to the well-known linear scaling for the conversion,
Clin ∼ ρ0U

2H 2N (Bell 1975a). We therefore expect I to be proportional to B2 in the
‘subcritical’ case, B � 1. The purpose of the present work is to determine I (B) for
arbitrary B .

3. The Green’s function
Following Llewellyn Smith & Young (2003) we introduce the Green’s function

G(x, z, z′), defined by

∂2G

∂x2
− ∂2G

∂z2
=

∞∑
n=−∞

δ(x − 2πn)δ(z − z′), (11)

by the boundary condition

G(x, 0, z′) = 0, (12)

and by the radiation condition.
The full Green’s function G takes into account a periodic array of sources at

(2πn, z′), and the boundary condition at z = 0. We will now construct G step by step,
starting with the Green’s function G1 for a single source on the infinite (x, z)-plane.
Assuming without restriction that the source is situated at (x, z) = (0, 0) we have

∂2G1

∂x2
− ∂2G1

∂z2
= δ(x)δ(z). (13)

The radiation condition requires that the group velocity is upward above the source,
and downward below the source. In Appendix A it is shown that this leads to

∂G1

∂z
=

⎧⎪⎪⎨
⎪⎪⎩

iH∂G1

∂x
, z > 0

−iH∂G1

∂x
, z < 0,

(14)

where H denotes the Hilbert transform, which is defined in Appendix A.
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A particular solution of (13) is most easily found in the rotated coordinate system
ξ, η defined by

x =
1√
2
(ξ − η), z =

1√
2
(ξ + η).

Equation (13) becomes

∂2G1

∂ξ∂η
= − 1

2
δ(ξ )δ(η).

This can easily be integrated twice, giving the particular solution

G1p = − 1
2
Hs(ξ )Hs(η),

where Hs is the symmetrized step function:

Hs(x) =

{
1
2
, x > 0

− 1
2
, x < 0.

Transforming back to the (x, z)-system, we obtain

G1p = −1

4

[
Π

(
x

2z

)
− 1

2

]
,

where Π is the rectangle function:

Π(x) =

{
1, |x| < 1

2

0, |x| > 1
2
.

We must then add a homogeneous solution of (13) in order to satisfy the radiation
condition. Identifying G1p with the real part of G1, we can determine the imaginary
part from (14). Using the relation

H Π
(x

a

)
=

1

π
ln

∣∣∣∣2x − |a|
2x + |a|

∣∣∣∣ ,

we obtain after some calculations

G1 = −1

4

[
Π

(
x

2z

)
− 1

2

]
+

i

4π
ln(|x + z||x − z|). (15)

This is the Green’s function for a single source on an infinite plane. The real part is
displayed in figure 3. Notice that the values in the four quadrants (i.e. 1/8, −1/8, 1/8,
−1/8 going clockwise from the x-axis) form a discrete saddle point at the source.

Next, we construct the Green’s function G2(x, z, z′) of a single source at (0, z′) with
a reflecting boundary at z = 0. This is easily done by adding a negative mirror source
at (0, −z′). We obtain

G2(x, z, z′) = G1(x, z, z′) − G1(x, z, −z′)

=
1

4

[
−Π

(
x

2(z − z′)

)
+ Π

(
x

2(z + z′)

)]

+
i

4π
ln

(
|x + z − z′||x − z + z′|
|x + z + z′||x − z − z′|

)
. (16)

The real part of G2 is displayed in figure 4.
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Figure 3. The real part of the Green’s function G1 defined in (15), showing the internal wave
radiation from a point source (marked by a solid circle) at the origin on an infinite vertical
plane.
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Figure 4. The real part of the Green’s function G2(x, z, z′) defined in (16), describing the
internal wave radiation from a point source at (0, z′) with a reflecting surface along the x-axis.
Here and in subsequent figures, the solid circles denote sources and the open circles mirror
sources, and the region z < 0, where the negative mirror sources in figures 4–7 are situated, is
not part of the model domain.

Finally, we obtain the full Green’s function G as an infinite series of horizontally
displaced functions G2:

G(x, z, z′) =

∞∑
n=−∞

G2(x + 2πn, z, z′). (17)

The imaginary part,

Gi(x, z, z′) =
1

4π

∞∑
n=−∞

ln

(
|x + 2πn + z − z′||x + 2πn − z + z′|
|x + 2πn + z + z′||x + 2πn − z − z′|

)
,

can be rewritten in a simpler form. Summing the terms associated with the
characteristics with negative slope separately, using the notation

χ± = 1
2
(x + z ± z′),
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Figure 5. The real part of the Green’s function G(x, z, z′) defined in (17), with sources at
(2πn, z′) and a reflecting surface along the x-axis, for the case 0 < z′ < π.

we obtain
∞∑

n=−∞
ln

∣∣∣∣x + z − z′ + 2πn

x + z + z′ + 2πn

∣∣∣∣ =

∞∑
n=−∞

ln

∣∣∣∣χ− + πn

χ+ + πn

∣∣∣∣
= ln

∣∣∣∣χ−

χ+

∣∣∣∣ +

∞∑
n=1

ln

∣∣∣∣ (χ− + πn)(χ− − πn)

(χ+ + πn)(χ+ − πn)

∣∣∣∣ .

The series can be calculated using the following relation, which is equation (1.521.2)
in Gradshteyn & Ryzhik (2000):

∞∑
n=1

ln

(
1 − χ2

n2π2

)
= ln sin |χ | − ln |χ |.

The result is
∞∑

n=−∞
ln

∣∣∣∣x + z − z′ + 2πn

x + z + z′ + 2πn

∣∣∣∣ = ln

∣∣∣∣∣sin
1
2
(x + z − z′)

sin 1
2
(x + z + z′)

∣∣∣∣∣ .

Proceeding in a similar way with the terms associated with the characteristics with
positive slope, we finally obtain

Gi(x, z, z′) =
1

4π
ln

∣∣∣∣∣sin
1
2
(x + z − z′) sin 1

2
(x − z + z′)

sin 1
2
(x + z + z′) sin 1

2
(x − z − z′)

∣∣∣∣∣ . (18)

The real part Gr , on the other hand, does not simplify, and instead of writing the
explicit expression we display it graphically in figures 5 and 6 for 0 < z′ < π and
π < z′ < 2π, respectively. Notice that the values near any source point form a discrete
saddle point, while the values near all other intersections between characteristics, e.g.
(π, π − z′), form sloping planes.
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Figure 6. The same as figure 5, but for the case π < z′ < 2π.
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Figure 7. The sum G(x, z, z′) + G(x, z, 2π − z′), where 0 < z′ < π.

We also consider the sum G(x, z, z′) + G(x, z, 2π − z′). From (18) we find
that Gi(x, z, z′) = −Gi(x, z, 2π − z′). The geometric reason for this is that those
characteristics that pass through positive sources of Gi(x, z, z′) pass through negative
mirror sources of Gi(x, z, 2π − z′). Thus, G(x, z, z′) + G(x, z, 2π − z′) is real. The sum
is displayed in figure 7 for 0 < z′ < π. Notice that it is constant everywhere in
z > 2π − z′. Thus, two periodic and equal sources at z′ and 2π − z′ interact in such
a way that no waves are emitted into the region above the sources; the waves are
confined to the region near the boundary, as if there were a wave guide.
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Figure 8. The real part of the Green’s function Gb(x, z, z′) defined in (19), with a single
source at (0, z′) and reflecting surfaces along the x-axis and the line z = π. In this case the
model domain is 0 < z < π, and the boundary conditions require an infinite series of vertically
displaced mirror sources, alternating between positive and negative sign. This figure corrects
figure 3 in Llewellyn Smith & Young (2003), and figure 1 in Robinson (1969).

Finally, we briefly consider the Green’s function Gb for the problem with a single
knife edge and an upper boundary at z = π, considered by Llewellyn Smith & Young
(2003). It is obtained as an infinite series of vertically displaced functions G2:

Gb(x, z, z′) =

∞∑
n=−∞

G2(x, z, z′ + 2πn). (19)

It is easily seen that the imaginary part of Gb is the same as that of G, hence it
is also given by (18). The real part, on the other hand, is different, since this is
where the sources appear. The real part is displayed in figure 8. This corrects figure 1
in Robinson (1969), which has no sources (i.e. no saddle points), and figure 3 in
Llewellyn Smith & Young (2003), which has a source at every intersection between
characteristics. The correct figure has one source in the region 0 < z < π.

4. Solution
Using the Green’s function obtained in the previous section, the solution of (6) is

represented as

ϕ(x, z) =

∫ B

0

γ (z′)G(x, z, z′) dz′, (20)

where γ (z) can be regarded as a source density along the ridge at x = 0. By the
construction of the Green’s function, ϕ automatically satisfies the radiation condition
and the boundary condition at z = 0, and is periodic in x. It remains to determine
γ (z) so that the following condition is satisfied:

ϕ = z on (x = 0, 0 < z < B). (21)
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Inserting (21) into (20) we obtain an integral equation for γ (z):

z =

∫ B

0

γ (z′)G(0, z, z′) dz′. (22)

The solution procedure depends on the value of B . If B > π the characteristics leaving
the upper part (2π − B < z < B) of each wall will intersect the neighbouring wall
after being reflected by the bottom. If B < π no characteristics will do this.

We begin with the case B < π. In this case z′ < π, and we see from figure 5 that
the real part of G(0, z, z′) vanishes over the whole integration interval in (22). Using
(18) we obtain

z =
i

2π

∫ B

0

γ (z′) ln

∣∣∣∣∣sin
1
2
(z − z′)

sin 1
2
(z + z′)

∣∣∣∣∣ dz′.

This equation has been solved by Llewellyn Smith & Young (2003), with the result

γ (z) = 2i

√
1 − cos z

cos z − cos B
. (23)

The wave field ϕ is obtained by substituting this equation into (20). Since γ is purely
imaginary, only the real part of G affects ϕi . From figure 5 we see that

∂Gr

∂x

∣∣∣∣
x=0+

= lim
x→0+

1
4
[δ(z − z′ − x) + δ(z − z′ + x)] = 1

2
δ(z − z′). (24)

(Notice that the contributions from all the other characteristics cancel each other as
x → 0+, for z > 0.) Differentiating (20) and using (24) we find

∂ϕi

∂x

∣∣∣∣
x=0+

=
γi

2
.

Equation (10) then gives

I (B) =

∫ B

0

z

√
1 − cos z

cos z − cosB
dz. (25)

This is the same as (4.6) and (4.7) in Llewellyn Smith & Young if we there set h = π.
We next consider the case π < B < 2π. In this case we split (20) into two integration

intervals, setting

ϕ = ϕ1 + ϕ2, (26)

where

ϕ1(x, z) =

∫ 2π−B

0

γ (z′)G(x, z, z′) dz′, (27)

ϕ2(x, z) =

∫ B

2π−B

γ (z′)G(x, z, z′) dz′. (28)

Guided by the symmetry of the Green’s function apparent in figure 7, we assume that
the source density over the upper integration interval is symmetric with respect to π,
i.e.

γ (2π − z′) = γ (z′), 2π − B < z′ < π. (29)

Over the lower integration interval we assume that the source density is the same as
in the previous case B < π, i.e. that (23) is valid over the interval 0 < z′ < 2π − B .
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With these assumptions we obtain

ϕ1(0, z) = − 1

π

∫ 2π−B

0

√
1 − cos z′

cos z′ − cos B
ln

∣∣∣∣∣sin
1
2
(z − z′)

sin 1
2
(z + z′)

∣∣∣∣∣ dz′. (30)

The integral is calculated in Appendix B, giving

ϕ1(0, z) =

⎧⎪⎨
⎪⎩

z, 0 < z < 2π − B

z −
∫ z

2π−B

√
1 − cos z′

cosB − cos z′ dz′, 2π − B < z < B.
(31)

For the upper integration interval we use the symmetry (29) to write

ϕ2(x, z) =

∫ π

2π−B

γ (z′)[G(x, z, z′) + G(x, z, 2π − z′)] dz′. (32)

From figure 7 we see that

G(0, z, z′) + G(0, z, 2π − z′) =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 < z < z′

1
2
, z′ < z < 2π − z′

1, z > 2π − z′,

where we have assumed 0 < z′ < π. Using this, (32) gives

ϕ2(0, z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, 0 < z < 2π − B

1

2

∫ z

2π−B

γ (z′) dz′, 2π − B < z < π

1

2

∫ 2π−z

2π−B

γ (z′) dz′ +

∫ π

2π−z

γ (z′) dz′, π < z < B.

(33)

We see from (31) and (33) that (21) is satisfied on 0 < z < 2π − B regardless of the
source distribution γ on the upper interval. To determine γ on the upper interval we
note from (26) that

ϕ2(0, z) = z − ϕ1(0, z),

and insert the known function ϕ1 from (31). The resulting equation can easily be
solved for γ . The complete source distribution is then given by

γ (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2i

√
1 − cos z

cos z − cos B
, 0 < z < 2π − B

2

√
1 − cos z

cos B − cos z
, 2π − B < z < B.

(34)

We finally calculate I from (10). Differentiating (27) and using (24) and the fact
that γ (z) is imaginary in 0 < z < 2π − B we obtain

∂ϕ1i

∂x

∣∣∣∣
x=0+

=

{
1
2
γi(z), 0 < z < 2π − B

0, 2π − B < z.

Furthermore, from (34) and the symmetry property of G discussed in § 3 we find that
the integrand in (32) is real over the whole integration interval. Hence, ϕ2 is real, and



Tidal generation of internal waves from an array of ridges 427

1

2

3

4

5

6

7

8

9

10

I

0 π 2π 3π
B

Figure 9. Plot of the function I (B) defined in (25) and (36)–(37), showing the radiated
power as a function of the dimensionless ridge height B .

does not contribute to (10). We obtain

I (B) =

∫ 2π−B

0

z

√
1 − cos z

cos z − cos B
dz. (35)

We may regard this as an extension for B > π of (25), using the relation

I (2π − B) = I (B). (36)

For B > 2π we have the periodic extension

I (B + 2π) = I (B). (37)

The function I (B) is plotted in figure 9. Notice that I ∼ B2 for B � 1, as expected.
We see from figure 9 that the conversion rate diverges for B = π, and vanishes

for B = 2π. In order to explain the physical mechanism behind this, the wave field
has been calculated explicitly for a few different values of B , cf. Appendix C. The
result is shown in figure 10, together with the source density along the walls. The
density perturbation has been calculated numerically from (44) and added to a linearly
stratified background density field. (The background stratification has been chosen
for visual appearance. It is stronger for B = 0.9π and B = 1.1π than for the other
values, since the density pertubation is much larger in these cases.) The contours
are isolines of the resulting total density field, the real and imaginary parts showing
different time phases of the oscillation.

As shown in figure 10, the source density is largest near the top of the walls. For
B = 0.9π and B = 1.1π we see that the wave generated at one wall top interferes
constructively with the wave that is generated at the neighbouring wall top and
reflected from the bottom. This leads to enhanced wave radiation. For B = 1.9π,
on the other hand, the wave generated at each wall top interferes destructively with
itself after reflection from the bottom and from the neighbouring wall. This leads to
weak wave radiation. For B = 2π the result is that the wave radiation is completely
suppressed, while there is a standing wave between the walls. Also note that the wave
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Figure 10. Illustration of the wave field and the source density for different values of the
dimensionless ridge height B . The contours are curves of constant total density (pertubation
plus a linearly stratified background). The real and imaginary parts of the density perturbation
has been used in columns (a) and (b), respectively. The source density along the walls is
shown in column (c), with the solid curves representing the real part and the dashed curves
the imaginary part of γ . The dotted lines denote singularities in the source distribution.

fields for B = 0.9π and 1.1π are identical above the topography, and only differ by
a standing wave in the region between the walls. The same holds for the wave fields
for B = 0.1π and 1.9π.
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5. Conclusion
The main result of the present work is (25) with the extension (36)–(37), showing

how the rate of conversion from barotropic tidal energy to internal wave energy
depends on the dimensionless ridge height B of a periodic array of thin and steep
ridges. These equations can be converted to dimensional units by using (8) and (9).
The dimensionless conversion rate I (B) is displayed in figure 9, while the wave field
and source density are shown for a few values of B in figure 10. Note that I (B) is
periodic in B .

In the limit B � 1 it can be shown from (25) that I 
 (π/4)B2, which implies that
the conversion at each of the ridges is

C 
 π

4
ρ0U

2H 2N.

This is the same as the result of Llewellyn Smith & Young (2003) for a single ridge
whose height is much smaller than the depth of the ocean. (It is also twice the linear
result for the conversion at a ridge with the shape of an Agnesi witch (Bell 1975a)).
Thus, in this limit each ridge is an independent source of internal waves.

For larger values of B the ridges interfere with one another. One result of this is the
resonance peaks for B = (1+2n)π, for which the conversion rate diverges. (A different
kind of resonance occurs for periodic topography when the ocean depth is finite. In
that case the conversion rate given by linear theory diverges if the topographic period
coincides with the wavelength of any of the internal modes, cf. Khatiwala 2003.)
Another striking result is that the conversion rate vanishes for B = 2nπ; in this case
there is only a standing wave between the ridges.

What are the implications of these results for the general scaling of the conversion
rate in the supercritical regime? Clearly, they give no support for the idea that I is
proportional to B2. Perhaps the most basic result is the periodicity of I (B). In an
average sense, this may be regarded as saturation for large values of B , although the
singularities of I (B) prevent any firm conclusion. In a more realistic case, with non-
periodic topography, these singularities would be absent. Presumably, the response
curve I (B) for such a topography would be some smoothed version of the curve in
figure 9. A small amount of dissipation should have a similar effect.

It was suggested in the introduction that such a saturation should be the result
of ‘shadowing’, cf. figure 1. However, we note from the calculations in § 4 that the
source of the radiated energy is in fact the lowest part of the ridges, for example
0 < z < 2π −B when π < B < 2π, where the source density is imaginary, cf. figure 10.
Thus, ‘shadowing’ gives at best a simplified explanation of the saturation. The real
reason lies in a complex interaction between direct wave beams and wave beams
reflected by the bottom and the walls.

In conclusion, I believe that the present results support the hypothesis that the
conversion rate in general saturates for large values of B , in agreement with the
numerical results by Khatiwala (2003). Such a saturation is in contrast to the linear
scaling I (B) ∼ B2, and would mean that computations based on linear theory, such
as those performed by Arbic et al. (2004), Egbert et al. (2004) and Nycander (2005),
overestimate the conversion rate where the slope is supercritical. However, more
research is needed to fully confirm this hypothesis.

Most of this work was done while I was participating in the Geophysical Fluid
Dynamics Program at Woods Hole Oceanographic Institution during the summer of
2004. I am grateful to Stefan Llewellyn Smith for discussions.
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Appendix A. Radiation condition for internal waves
We start from (1) for internal waves. After Fourier transformation it gives the

dispersion relation

ω2m2 = N2k2, (A 1)

where (k, m) is the wave vector in Fourier space. We may without restriction take
ω to be positive, so that the sign of the vertical phase velocity ω/m is determined
by the sign of m. Above the source, the radiation condition requires that the vertical
component of the group velocity be positive. From the dispersion relation it may
easily be shown that the group velocity and the phase velocity have opposite signs,
and the radiation condition can therefore be written

m = −N

ω
|k|.

Using the dimensionless variables defined in § 2, we have

m = −|k|. (A 2)

We will now perform an inverse Fourier transformation of this expression. We need
the Hilbert transform, defined by

Hf (x) =
1

π
P

∫ ∞

−∞

f (y)

y − x
dy,

where P denotes the principle value. The following property of the Hilbert transform
can easily be derived. If two functions g(x) and h(x) are related by

g = H∂h

∂x
,

then their respective Fourier transforms satisfy

g̃ = −|k|h̃,

where the Fourier transform is defined by

g̃(k) =

∫ ∞

−∞
e−ikxg(x) dx.

From (A 2) we have

imϕ̃ = −i|k|ϕ̃.

After inverse Fourier transformation in z, which is trivial, and in x, which can be
done using the above property of the Hilbert transform, we obtain

∂ϕ

∂z
= iH∂ϕ

∂x
,

i.e. the first case in (14).
Below the source the group velocity should be negative, which reverses the sign in

(A 2). Proceeding as above, we obtain the second case in (14).

Appendix B. Calculation of integral
To calculate the integral in (30), first differentiate with respect to z:

∂ϕ1

∂z

∣∣∣∣
x=0

=
1

π
P

∫ 2π−B

0

√
1 − cos z′

cos z′ − cos B

sin z′

cos z − cos z′ dz′, (B 1)
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where P denotes the principal part. (The integral in (30) is absolutely convergent at
the singularity z′ = z, while the integral in (B 1) is not. By taking the principal part,
equality still holds.) Making the substitution cos z′ = ξ , we obtain

∂ϕ1

∂z

∣∣∣∣
x=0

=
1

π
P

∫ 1

cos B

√
1 − ξ

ξ − cos B

dξ

cos z − ξ
.

Further substituting √
ξ − cosB

1 − ξ
= η,

we obtain

∂ϕ1

∂z

∣∣∣∣
x=0

=
2

π

1 − cos B

cos z − 1
P

∫ ∞

0

1

η2 +
cos z − cos B

cos z − 1

dη

η2 + 1
. (B 2)

If cos z > cos B there is a singularity for some positive value of η. The integral can
then be calculated using the relation

P
∫ ∞

0

dx

(x2 + a2)(x2 − b2)
= − π

2a(a2 + b2)
,

which can be derived by the method of residues. We obtain

∂ϕ1

∂z

∣∣∣∣
x=0

= 1. (B 3)

If cos z < cosB there is no singularity in the integral (B 2), and we use

P
∫ ∞

0

dx

(x2 + a2)(x2 + b2)
=

π

2ab(a + b)
,

which gives

∂ϕ1

∂z

∣∣∣∣
x=0

=
cos B − 1

cos B − cos z +
√

(1 − cos z)(cos B − cos z)

= 1 −
√

1 − cos z

cos B − cos z
. (B 4)

By integration of (B 3) and (B 4) we finally obtain (31).

Appendix C. Explicit calculation of the density field
For a harmonic internal wave the density perturbation is proportional to the vertical

velocity, and therefore to ∂ϕ/∂x. From (20) we obtain

∂ϕ(x, z)

∂x
=

∫ B

0

γ (z′)
∂

∂x
G(x, z, z′) dz′.

Inserting the real part Gr from (17) and the imaginary part Gi from (18) this can be
rewritten as

∂ϕ(x, z)

∂x
=

1

4

∑
n

sign(x + 2πn) [γ (x + z + 2πn)

+ γ (−x + z − 2πn) − γ (−x − z − 2πn) − γ (x − z + 2πn)]
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+
i

8π

∫ B

0

γ (z′)

[
cot

(
x + z − z′

2

)
+ cot

(
x − z + z′

2

)

− cot

(
x + z + z′

2

)
− cot

(
x − z − z′

2

)]
dz′, (C 1)

where each of the four first terms is summed over all n for which the argument of γ

is between 0 and B . (Equivalently, we can define γ to be zero outside this interval,
and sum over all n.) The integral is evaluated by numerical quadrature.
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